42,615 research outputs found

    Taking a break: doctoral summer schools as transformative pedagogies

    Get PDF
    This chapter focuses on the doctoral summer school as a challenging pedagogy for doctoral education, in which the traditional supervisory relationship and the disciplinary curriculum are deconstructed through intensive group processes. We draw on our experiences as pedagogues on the Roskilde University Graduate School in Lifelong Learning which has hosted an international summer school for the last ten years. We describe the new learning spaces created and explore the democratic group processes and the collaborative action learning in-volved when discipline and stage of study are set to the side in this multi-paradigmatic, multi-national context. Despite the wide range of participants in terms of length of study, focus and methodological approach, the respite from supervisory pedagogies and the careful critiques of multi-national peer ‘opponents’ is often transformative in the doctoral students’ research sub-jectivities and continuing journeys

    Pion and Kaon Condensation at Finite Temperature and Density

    Get PDF
    In this paper, we study O(2N)-symmetric ϕ4\phi^4-theory at finite temperature and density using the 2PI-1/N expansion. As specific examples, we consider pion condensation at finite isospin chemical potential and kaon condensation at finite chemical potential for hyper charge and isospin charge. We calculate the phase diagrams and the quasiparticle masses for pions and kaons in the large-N limit. It is shown that the effective potential and the gap equation can be renormalized by using local counterterms for the coupling constant and mass parameter, which are independent of temperature and chemical potentials.Comment: 10 pages. 7 Figures. v2: Better plots and figs. Added significant number of refs v3: Accepted for publication in PRD. Added a figure and improved part on renormalization as well as presentatio

    Coupling single emitters to quantum plasmonic circuits

    Get PDF
    In recent years the controlled coupling of single photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic non-linearity on a nano-scaled platform. In this article we will review the recent progress on coupling single emitters to nano-wires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale, and for the study of fundamental physics in the ultra-strong coupling regime

    Algebraic and algorithmic frameworks for optimized quantum measurements

    Get PDF
    Von Neumann projections are the main operations by which information can be extracted from the quantum to the classical realm. They are however static processes that do not adapt to the states they measure. Advances in the field of adaptive measurement have shown that this limitation can be overcome by "wrapping" the von Neumann projectors in a higher-dimensional circuit which exploits the interplay between measurement outcomes and measurement settings. Unfortunately, the design of adaptive measurement has often been ad hoc and setup-specific. We shall here develop a unified framework for designing optimized measurements. Our approach is two-fold: The first is algebraic and formulates the problem of measurement as a simple matrix diagonalization problem. The second is algorithmic and models the optimal interaction between measurement outcomes and measurement settings as a cascaded network of conditional probabilities. Finally, we demonstrate that several figures of merit, such as Bell factors, can be improved by optimized measurements. This leads us to the promising observation that measurement detectors which---taken individually---have a low quantum efficiency can be be arranged into circuits where, collectively, the limitations of inefficiency are compensated for

    A Generic Framework for Engineering Graph Canonization Algorithms

    Full text link
    The state-of-the-art tools for practical graph canonization are all based on the individualization-refinement paradigm, and their difference is primarily in the choice of heuristics they include and in the actual tool implementation. It is thus not possible to make a direct comparison of how individual algorithmic ideas affect the performance on different graph classes. We present an algorithmic software framework that facilitates implementation of heuristics as independent extensions to a common core algorithm. It therefore becomes easy to perform a detailed comparison of the performance and behaviour of different algorithmic ideas. Implementations are provided of a range of algorithms for tree traversal, target cell selection, and node invariant, including choices from the literature and new variations. The framework readily supports extraction and visualization of detailed data from separate algorithm executions for subsequent analysis and development of new heuristics. Using collections of different graph classes we investigate the effect of varying the selections of heuristics, often revealing exactly which individual algorithmic choice is responsible for particularly good or bad performance. On several benchmark collections, including a newly proposed class of difficult instances, we additionally find that our implementation performs better than the current state-of-the-art tools

    Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) test report

    Get PDF
    The Hypersonic Research Engine-Aerothermodynamic Integration Model (HRE-AIM) was designed, fabricated, and tested in the Hypersonic Tunnel Facility. The HRE-AIM is described along with its installation in the wind tunnel facility. Test conditions to which the HRE-AIM was subjected and observations made during the tests are discussed. The overall engine performance, component interaction, and ignition limits for the design are evaluated

    Hybrid HVDC for supply of power to offshore oil platforms

    Get PDF
    A HVDC hybrid system, comprising a line commutated thyristor HVDC converter and a STATCOM, is proposed in this paper for supplying power to offshore oil platforms that do not have their own generation. The proposed system combines the robust performance, low capital cost and low power loss of a line commutated HVDC converter, with the fast dynamic performance of an equivalent VSC Transmission system. The paper describes the principles and control strategies of the proposed system. PSCAD/EMTDC simulations are presented to demonstrate the robust performance of the system using case studies of various operating conditions such as black-start, load perturbations, AC fault conditions and disturbance caused by the starting of large local induction machines

    Coherent-state phase concentration by quantum probabilistic amplification

    Full text link
    We propose novel coherent-state phase concentration by probabilistic measurement-induced ampli- fication. The amplification scheme uses novel architecture, thermal noise addition (instead of single photon addition) followed by feasible multiple photon subtraction using realistic photon-number resolving detector. It allows to substantially amplify weak coherent states and simultaneously reduce their phase uncertainty, contrary to the deterministic amplifier

    Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States

    Get PDF
    We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially non-degenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of OAM modes is mapped on an orbital Poincare sphere, and the modes position on the sphere is spanned by the three orbital parameters. Using the non-degenerate OPO we produce squeezing of these parameters, and as an illustration, we reconstruct the "cigar-shaped" uncertainty volume on the orbital Poincare sphere.Comment: 4 pages, 4 figure

    Anisotropy study of multiferroicity in the pyroxene NaFeGe2_2O6_6

    Full text link
    We present a study of the anisotropy of the dielectric, magnetic and magnetoelastic properties of the multiferroic clinopyroxene NaFeGe2_2O6_6. Pyroelectric currents, dielectric constants and magnetic susceptibilities as well as the thermal expansion and the magnetostriction were examined on large synthetic single crystals of NaFeGe2_2O6_6. The spontaneous electric polarization detected below TC11.6T_{\rm C}\simeq 11.6 K in an antiferromagnetically ordered state (TN13T_{\rm N}\simeq 13 K) is mainly lying within the acac plane with a small component along bb, indicating a triclinic symmetry of the multiferroic phase of NaFeGe2_2O6_6. The electric polarization can be strongly modified by applying magnetic fields along different directions. We derive detailed magnetic-field versus temperature phase diagrams and identify three multiferroic low-temperature phases, which are separated by a non-ferroelectric, antiferromagnetically ordered state from the paramagnetic high-temperature phase.Comment: 14 pages, 8 figures. (minor modifications and corrections of the text
    corecore